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Abstract

Magnetic fields in a superconducting film are modeled by a vortex

lattice. The formulation of Pearl for a single vortex in a semi-infinite

bulk super conductor is extended to a thin film. The field distribution for

an array of vortices is obtained by summing the fields from the individ-

ual vortices. Numerical methods are used to calculate field distribution

and obtain the rms of field variation σb which provides a measure of su-

perconducting electron density. Muon spin rotation,µSR, is explored as a

technique to study the magnetic field distributions in the superconducting

films.

1 Introduction

Muon spin rotation (µSR) allows local magnetic fields to be probed in super-
conducting materials. In Niedermayer et al.[2] a low energy µ+ beam allowed
fields near the surface of a film to be studied. In that case the film thickness
was on the order of but larger than penetration depth λ. Here we calculate
fields for thinner films with a thickness closer to λ. High quality, single crystal
superconductors can be obtained as thin films grown on a substrate.

2 Calculations

We expand upon the calculations of the Pearl geometry in which the super-
conducting region fills the half space z > 0 to one in which a film is centered
on z = 0 by applying appropiate boundary conditions. The Ginzburg-Landau
equation:

−∇2
A

µ0
= Js =

e2

m
[−A |ψ|

2
− (

iφ0

4π
)(ψ∗∇ψ − ψ∇ψ∗)] (1)

gives the vector potential inside the superconducting region for a single vor-
tex as:
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∇×∇× A + (1/λ2)A =
φ0θ̂

2πλ2r
(2)

Where φ0 = 2.07 × 103 gauss· kÅ is the flux quantum. Outside the super-
conducting region A is expressed by

∇×∇× A = 0 (3)

Using cylindrical coordinates and centering the z axis on the vortex, A can be
written as A = θ̂f(r, z). Then (2) and (3) become

∂2f2
∂z2

+
∂

∂r

1

r

∂

∂r
rf2 −

1

λ2
f2 = −

φ0

2πλ2r
(4)

and
∂2f1
∂z2

+
∂

∂r

1

r

∂

∂r
rf1 = 0 (5)

respectively.
In the Pearl geometry the solution inside the metal becomes:

f2 =

∫

∞

0

φ0

2πλ2

J1(γr)

γ2 + 1/λ2

[

1 −
γexp(−(γ2 + 1/λ2)1/2z)

γ + (γ2 + 1/λ2)1/2

]

dγ z > 0 (6)

Let s = (γ2 + 1/λ2)1/2, then we can write (6) as:

f2 =

∫

∞

0

φ0

2πλ2

J1(γr)

s2

[

1 −
γexp(−sz)

γ + s

]

dγ (7)

And the soution outside

f1 =

∫

∞

0

φ0

2πλ2

J1(γr)

s2
eγz s

s+ γ
dγ z < 0 (8)

For a film of thickness d, centered on the z = 0 plane, the solution inside is:

f2 =

∫

∞

0

φ0

2πλ2

J1(γr)

s2

[

1 −
γ[exp(−s(z + d/2) + exp(+s(z − d/2)))]

s(1 − e−sd) + γ(1 + e−sd)

]

dγ (9)

Outside the solution becomes:

f1 =







∫

∞

0
φ0

2πλ2

J1(γr)
s2

(1−e−sd)e−γ(z−d/2)s
s(1−e−sd)+(1+e−sd)γ

dγ if z > d/2
∫

∞

0
φ0

2πλ2

J1(γr)
s2

(1−e−sd)eγ(z+d/2)s
s(1−e−sd)+(1+e−sd)γ

dγ if z < −d/2
(10)

3 Results

3.1 Fields

The field lines for a single vortex are plotted for two films of varying thickness
in figure (1). In both cases a significant radial component occurs away from the
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Figure 1: Field lines for 1.0 kÅ and 10 kÅ films with a penetration depth λ =
1.3 kÅ.
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Figure 2: Bz(r, z) andBr(r, z) plotted near the edge of a 1.0 kÅ film. λ = 1.3 kÅ.

vortex core and near the surface; near the core and deep in the metal it drops
significantly.

Figure (2) shows the local field components for a single vortex. The per-
pendicular and radial components are plotted as a function of r for points near
the film’s lower surface. Both drop off fairly sharply as one moves away from
the vortex. Bz appears sharper, which seems to agree with figure (1) where Br

becomes more dominant further from the core.
The magnetic flux is calculated for a single vortex. Figure (3a) plots flux

within a 10 kÅ radius as a function of film thickness for various penetration
depths. For large radii, calculated flux approaches the flux quantum φ0 =
2.07 × 103 (kÅ)2. Near the vortex flux is reduced for smaller thicknesses. A
consequence of reduced flux close to the vortex would be a reduced σb which
could be measured.

3



0 5 10 15 20 25 30
Film Thickness (kÅ)

0

500

1000

1500

2000

Φ
(g

au
ss

·k
Å2 )

λ=0.7 kÅ
λ=1.3 kÅ
λ=4.0 kÅ

(a) Flux within 10 kÅ
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Figure 3: Flux for a single vortex. Figure(3a) Shows flux taken at midplane
within a 10 kÅ radius of the vortex versus thickness for various λ. Figure(3b)
shows fields calculated at the edge of 1 kÅ and 10 kÅ samples for λ = 1.3 kÅ

Figure (3b) shows the z component of fields for a single vortex calculated at
center of films of 1 kÅ and 10 kÅ thickness. The total flux for the thinner film
appears smaller, however they converge for large r.

The second moment is plotted as a function of film thickness in figure (4a)
for a penetration depth of 1 kÅ. σb drops off sharply for d < λ. Figure (4b)
show second moment as a function of temperature. The values are obtained by
varying λ in the calculation by the relation:

λ2(T ) = λ2(0)
√

1 − (T/Tc)2 (11)

Where λ(0) = λ0 is the experimentally determined zero tempurature pene-
tration depth. The second moment is related to λ(T ) by:

σb ∝
λ2

0

λ2(T )
(12)

3.2 µSR

The field distribution for an array of vortices is calculated by summing fields
of individual vortices in a two dimensional equilateral triangle lattice. µSR
is explored as a technique to experimentally determine behavior of magnetic
fields in thin films. Simulated data is generated for both parallel and transverse
polarized beams in various regions of a characteristic section of the triangular
lattice. The applied magnetic field is perpendicular to the film for both cases. In
the transverse case the initial polarization of the muon beam is perpendicular to
the applied field; in the parallel case it is parallel. Figure (5a) shows polarization
as a function of time P (t) in the x direction for muons initially polarized as such.
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Figure 4: Second moments calculated for various temperatures and thicknesses.
Figure (4a) plot σb as a function of thickness for λ = 1 kÅ. Figure(4b) shows
σb as a function of tempurature where λ0 = .65 kÅ.

P (t) is averaged over two separate slices of film, one near the edge and one close
to the center. Similarly figure(5b) plots P (t) for muons polarized parallel to the
applied magnetic field and measured in the same direction.

4 Numerical Methods

The ffc and hv programs are used to calculate magnetic fields for an array of
vorticies. The ffc program calculates fields inside the film for 17 layers inside
the film out to a radius of approximately 44 kÅ for a single vortex. The output
is then read in by hv which calculates fields on a characteristic section of the
lattice for an array of vorticies. The z component average and rms is computed
for each layer and the sum of layers.

d and λ are read in as input and vector potential inside the film is computed
similarly to equation (9). The argument of the integral is summed over γ = .01/r
to 100 with double precision variables. J1 is computed with a polynomial fit of
the bessel function.

arz(r, z, d, λ) =

100
∑

γ=.01/r

φ0

2πλ2

J1(γr)

s2

[

1 −
γ[exp(−s(z + d/2) + exp(+s(z − d/2)))]

s(1 − e−sd) + γ(1 + e−sd)

]

(13)
A partial derivative method is used to calculate magnetic fields. The radial
component Br = −∂f2

∂z is computed as

hrrz(r, z, d, λ) =
−(arz(r, z + .005, d, λ)− arz(r, z − .005, d, λ))

.01
(14)
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Figure 5: Simulated µSR data for transverse and parallel field. Black: Muons
stopping near film surface. Red: Muons stopping in center of film. The parallel
polarized muon have nearly zero amplitude

The component parallel to the vortex coreBz = 1
r

∂
∂r (rf2) is computed as

hzrz(r, z, d, λ) =
(r + .005)arz(r + .005, z, d, λ)− (r − .005)arz(r − .005, z, d, λ)

.01 ∗ r
(15)

The fields are calculated for a range of (ri, zk), ri = .01 · 1.3i for i : 0 → 32
for each layer and zk = k · d/17 for k : 0 → 8. Symmetry allows the layers on
both sides of th z = 0 plane to be calculated simultaneously. The components
for each r and z are listed in two data files to be read in by hv.

Fields are calculated for an array of vorticies with spacing of a = 1.546 kÅ in
an equilateral triangle configuration corresponding to a perpendicular 1k Gauss
field. The set of vorticies calculated over is shown in figure (6).

A characteristic region for field calculations is chosen as a right triangle with
a vertex at the origin vortex, one at the midpoint towards the vortex along the x
axis, and one at the centroid of the lattice triangle. See figure (7a). The region
is divided into 40 × 40 grid with △x ≈ 19.82 Å and △y ≈ 11.44 Å. Bx,By,
and Bz components the field for each point within the closure of the region are
calculated for each vortex by linear interpolation between ri data points read in
from ffc and summed with the singularity at the origin excluded. The process
is repeated for eack zk layer.

Average field for each layer is determined by a weighted sum. There is a
singularity at the origin so this index is excluded. The 90 deg corner is weighted
1
4 th of the interior. The other vertex is weighted 1

8 and the second index along
the bottom next to the origin is weighted 3

8 . The edge indicies are weighted 1
2

and the second line of indicies in along the hypotenuse are weighted 7
8 . The rms

of field is caculated for each layer and and averaged over the layers with middle
layer given a weight of 1

2 .
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Figure 6: Vorticies used to calculate fields. There is one at the origin and six in
each direction of the lattice axes.

(a) Characteristic region of the lattice (b) Field calculation grid

Figure 7: Region of the lattice where fields are calculated. Figure(7a) shows the
calculated region within a lattice triangle. The left vertex is the origin vortex.
Figure (7b) shows the points where the field is calculated. The boundaries are
included but must be partially weighted.
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5 Conclusion

Experimentation could be used to evaluate these methods on thin films. Second
moment dependence on thickness could be used to extend experimental data
on thin films to obtain superconducting electron density for larger geometries.
These calculations will need to be extended to include coherence length xi for
samples with large cores such as Nb.
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